Nucleation of ordered solid phases of proteins via a disordered high-density state: phenomenological approach.
نویسندگان
چکیده
Nucleation of ordered solid phases of proteins triggers numerous phenomena in laboratory, industry, and in healthy and sick organisms. Recent simulations and experiments with protein crystals suggest that the formation of an ordered crystalline nucleus is preceded by a disordered high-density cluster, akin to a droplet of high-density liquid that has been observed with some proteins; this mechanism allowed a qualitative explanation of recorded complex nucleation kinetics curves. Here, we present a simple phenomenological theory that takes into account intermediate high-density metastable states in the nucleation process. Nucleation rate data at varying temperature and protein concentration are reproduced with high fidelity using literature values of the thermodynamic and kinetic parameters of the system. Our calculations show that the growth rate of the near-critical and supercritical ordered clusters within the dense intermediate is a major factor for the overall nucleation rate. This highlights the role of viscosity within the dense intermediate for the formation of the ordered nucleus. The model provides an understanding of the action of additives that delay or accelerate nucleation and presents a framework within which the nucleation of other ordered protein solid phases, e.g., the sickle cell hemoglobin polymers, can be analyzed.
منابع مشابه
Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor.
The temperature-dependent terahertz spectra of the partially-disordered and ordered phases of camphor (C10H16O) are measured using terahertz time-domain spectroscopy. In its partially-disordered phases, a low-intensity, extremely broad resonance is found and is characterized using both a phenomenological approach and an approach based on ab initio solid-state DFT simulations. These two descript...
متن کاملOrder-disorder transition in the solid phase of a charged hard sphere model.
We investigate the solid phases of the restricted primitive model (RPM). Monte Carlo simulations show the existence of an order-disorder transition from a substitutionally disordered face centered cubic lattice (fcc) to a new ordered fcc structure which is proposed as the ground state of the RPM at the close packing density. Our results suggest that the new phase might turn out in a new triple ...
متن کاملFree energy and vibrational entropy difference between ordered and disordered Ni3Al
We have calculated free energy and vibrational entropy differences in Ni3Al between its equilibrium ordered structure and a disordered fcc solid solution. The free energy and entropy differences were calculated using the method of adiabatic switching in a molecular-dynamics formalism. The path chosen for the free-energy calculations directly connects the disordered with the ordered state. The a...
متن کاملTwo-dimensional structure in a generic model of triangular proteins and protein trimers.
Motivated by the diversity and complexity of two-dimensional (2D) crystals formed by triangular proteins and protein trimers, we have investigated the structures and phase behavior of hard-disk trimers. In order to mimic specific binding interactions, each trimer possesses an "attractive" disk which can interact with similar disks on other trimers via an attractive square-well potential. At low...
متن کاملSolid State Polymorphism and Dynamics of 2,2-Dimethylbutan-1-ol as Studied by Adiabatic Calorimetry and Dielectric Spectroscopy
2,2-dimethylbutan-1-ol, known as neohexanol, was studied by adiabatic calorimetry and dielectric spectroscopy. Details of complex solid state polymorphism and relaxational dynamics were identi ed and described. System of phases of neohexanol was found to be monotropic with three orientationally disordered crystalline phases besides isotropic liquid and ordered crystal. Moreover, two subsequent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 122 17 شماره
صفحات -
تاریخ انتشار 2005